Wild genetic adaptations can have many uses

Science Notes: A gene that helps rice grow taller in floods is a variant of rice genes used to rapidly increase yield

Reading Time: < 1 minute

When floodwaters rise, some rice varieties rapidly grow taller to keep from drowning.

A new study identifies the key gene responsible for the deep-water rice adaptation — SD1 (semidwarf 1). It’s a variant of the gene responsible for the increased grain yield that launched the rice Green Revolution.

The ability of this gene to function in such diverse roles in cultivated rice highlights the “intrinsic complexity and molecular plasticity of plant adaptation strategies,” the authors say.

Deep-water rice varieties can survive months-long periods of inundation in flood-prone areas by rapidly elongating their stems, to keep the plant’s leaves above the water’s surface.

While the plant hormones ethylene and gibberellin (GA) were thought to trigger the metres-long growth spurt, the genetic mechanics and origin of this adaptation have remained elusive.

Takeshi Kuroha and other researchers performed a genome-wide association study using a selection of Asian rice and deep-water rice varieties to identify the factors regulating this submergence-induced growth.

They recently revealed a novel molecular mechanism they call the “ethylene-gibberellin relay.”

When submerged, the gaseous plant hormone ethylene, accumulates within the plants, which triggers SD1 to increase the production of the GAs — one of which, GA4, promotes rapid stem growth.

An evolutionary analysis of various rice species suggests that this modern-day, flood-prone variety was selectively bred from the wild ancestor of rice in Bangladesh, where seasonal flooding is a regular occurrence.

Kuroha’s study indicates that variants of the SD1 gene have been co-opted by humans for rice cultivation in very different systems, when higher yields were sought as part of the Green Revolution, and under heavy monsoon flooding.

Identifying further genetic variation in wild rice could offer useful adaptive solutions, which could be bred into new modern rice varieties, particularly as climate change triggers radical shifts in weather.

About the author

Glacier FarmMedia staff's recent articles



Stories from our other publications